Pandrol and the Railways in China

by Zhenping ZHAO, Dean WHITMORE, Zhenhua WU, Railtech-Pandrol China,
Junxun WANG, Chief Engineer, China Railway Construction Co. No. 18, P.R. of China

Contents

The high-speed railway network in China is now developing at a rapid pace. The Chinese Ministry of Railways (MOR) has a very ambitious plan to develop its railway network from the current route length of 80,000km to a route length of 120,000km by 2020. Out of this additional 40,000km of track, 12,000km will be dedicated high-speed passenger lines (PDL lines), with maximum speeds of 350km/h.

All of the following are currently being prepared for high-speed rail services. Most of the lines will open with a line speed of 200 km/h, limited by the trains and national law. Over time the permitted speeds will be increased up to the maximum allowed for by the track design.

Four north-south lines: (PDL)
- Beijing-Harbin Line via Tianjin, Dinhaungao, Shenyang, Branch: Shenyang-Dalian.
- Beijing-Shanghai Line via Tianjin, Jinan, Xi'an, Shanghai, HongQing, Nanjing: 350 km/h.
- Beijing-Hong Kong Line via Shijiazhuang, Zhengzhou, Wuhan, Changsha, Guangzhou, Shenzhen, infrastructure designed for future operations at 350 km/h.
- Shanghai-Shenzhoun Line via Hangzhou, Ningbo, Wenzhou, Fuzhou, Xiamen, Shanghai-Hangzhou-Ningbo part is designed for 350 km/h, the rest is designed for 200-250 km/h for both passengers and freight.

Four east-west lines (PDL)
- Qingdao-Taiyuan Line via Jinan, Shijiazhuang, Taiyuan line is designed for 200–250 km/h for both passengers and freight, others are designed for 200–250 km/h for passengers.
- Xi'an-Hangzhou via Zhengzhou, X'ian, BaJing, 350 km/h.
- Shanghai-Chengdu Line via Nanyang, Hefei, Wuhu, Chongqing; Shanghai-Nanjing section is part of Beijing-Shanghai line with 350 km/h tracks, Nanyang-Chengdu line is designed for 200–250 km/h for both passengers and freight.
- Hangzhou-Kunming via Nanchang, Changsha,Guiyang, Track 350 km/h.

These 8 lines total 12,000 km.
DIRECT FIXATION ASSEMBLIES

Construction Schedule

<table>
<thead>
<tr>
<th>Route</th>
<th>Short name</th>
<th>Length (km)</th>
<th>Design Speed (km/h)</th>
<th>Construction Start Date</th>
<th>Open Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qinhuangdao-Shenyang</td>
<td>Qin-Shen</td>
<td>404</td>
<td>200</td>
<td>8/16/1999</td>
<td>10/12/2003</td>
</tr>
<tr>
<td>Fuzhou-Xiamen</td>
<td></td>
<td>273</td>
<td>200</td>
<td>9/1/2005</td>
<td>12/30/2009</td>
</tr>
<tr>
<td>Guangzhou-Shenzhen</td>
<td></td>
<td>105</td>
<td>350</td>
<td>12/18/2005</td>
<td>1/1/2010</td>
</tr>
<tr>
<td>Longyan-Xiamen</td>
<td></td>
<td>171</td>
<td>200</td>
<td>12/25/2006</td>
<td>1/1/2010</td>
</tr>
<tr>
<td>Shanghai-Nanjing</td>
<td></td>
<td>296</td>
<td>200</td>
<td>7/1/2008</td>
<td>5/10/2010</td>
</tr>
<tr>
<td>Wuhan-Jiujiang</td>
<td></td>
<td>258</td>
<td>200</td>
<td>12/16/2008</td>
<td>12/16/2010</td>
</tr>
<tr>
<td>Wuhan-Yichang</td>
<td></td>
<td>293</td>
<td>200</td>
<td>9/17/2008</td>
<td>1/1/2012</td>
</tr>
<tr>
<td>Heifei-Bengbu</td>
<td></td>
<td>131</td>
<td>300</td>
<td>1/8/2009</td>
<td>6/12/2012</td>
</tr>
<tr>
<td>Guiyang-Guangzhou</td>
<td>Gui-Guang</td>
<td>857</td>
<td>200</td>
<td>10/13/2008</td>
<td>1/1/2012</td>
</tr>
<tr>
<td>Beijing-Shijiazhuang</td>
<td>Jing-Shi</td>
<td>281</td>
<td>300</td>
<td>10/8/2008</td>
<td>10/1/2012</td>
</tr>
<tr>
<td>Shijiazhuang-Wuhan</td>
<td></td>
<td>838</td>
<td>300</td>
<td>10/15/2008</td>
<td>10/1/2012</td>
</tr>
<tr>
<td>Harbin-Qiqihar</td>
<td></td>
<td>285</td>
<td>200</td>
<td>11/20/2008</td>
<td>11/20/2012</td>
</tr>
<tr>
<td>Harbin-Dalian</td>
<td>Har-Da</td>
<td>904</td>
<td>350</td>
<td>8/23/2007</td>
<td>2/12/2013</td>
</tr>
<tr>
<td>Beijing-Shanghai</td>
<td>Jing-Hu</td>
<td>1318</td>
<td>300</td>
<td>4/18/2008</td>
<td>3/1/2013</td>
</tr>
</tbody>
</table>

Pandrol has been very much a part of MDR’s plans, with involvement in a number of PDL and metro lines. Shijiazhuang to Taiyuan (5-1) PDL

<table>
<thead>
<tr>
<th>Classification</th>
<th>Application Standard</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum design speed</td>
<td>250 km/h</td>
<td></td>
</tr>
<tr>
<td>Minimum radius</td>
<td>5,000 m</td>
<td></td>
</tr>
<tr>
<td>Maximum Gradient</td>
<td>1.3%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Effective length of platform</td>
<td>1,090m</td>
<td></td>
</tr>
<tr>
<td>Track Gauge</td>
<td>1,435mm</td>
<td></td>
</tr>
<tr>
<td>Distance between adjacent tracks</td>
<td>4.6m</td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td>CHn60 60kg/m</td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>AC25KV</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>-25°C ~ +40°C</td>
<td></td>
</tr>
</tbody>
</table>

Main Line Length: 190km

- **Earthwork**: Length: 76km, Ratio: 40%
- **Bridge**: Length: 39km, Ratio: 21%
- **Tunnel**: Length: 75km, Ratio: 39%

Track Construction on the S-T PDL

A test installation was carried out at the depot at Shijiazhuang in March 2008. The contractor wanted a quick installation and adjustment of the line and level, in order that materials trains could be run through the tunnels to the other areas of construction as quickly as possible.

1. Simultaneous prefabricated slabs were laid and adjusted to approximately the correct level by inserting grout into a large bag attached to the underside of the slab.
2. The baseplates were fitted to the slabs in the "neutral" position.
3. Rails were installed and clipped up.
4. Due to the accuracy of the data logging, materials trains could be run through the tunnel immediately.
5. In between materials trains, a full line and level survey of the rails was undertaken using very accurate rail mounted laser based equipment.
6. The installed position of the track was compared to the design position and lifts and shims marked onto the rail.
7. An adjustment team followed behind. A series of colour coded (PL, PH, PHP, and steel shims were provided, which allowed the track height to be very accurately set. Suitable tools could be manoeuvred into position, the track fitted with cullars, and the correct shims slid into place.
8. It is also important to check the gap between the datum surface of baseplate and the bottom of the rail base, using a simple "gap gauge" to measure the gap. An alternative way can be using a measurement using a laser measuring device.
9. The actual measured gap is compared with the designed standard gap value and the difference marked in the related baseplates.
10. Follow the procedure stated in step 7 to install shims with the correct thickness.
11. Lateral adjustment took place. After levelling the baseplate bolts on the datum rail, engineers could move the bolt to the amount required and make the adjustment using the shims in the baseplates and the related washer. The datum rail baseplates were then tightened and the gauge set on the other rail in the same manner.

Construction of the new Passenger Dedicated Link (PDL) from Shijiazhuang to Taiyuan began in 2005. This PDL has been designed for an initial operating speed of 150km/h, which will be increased to 300km/h after several years' operation. Unusually for a PDL, some freight traffic will also be allowed on the line, and it has a maximum allowable axle load of 25 tonnes.

The line has a total route length of 190km. This is comprised of 76km of plain tracks, 39km of bridges, and 75km of tunnels. The ballasted tracks are equipped throughout with PANBOL FASTCLIP rail fastenings. There are three main tunnels: The Tahtangshan tunnel (27.848km); Nanliang tunnel (11.53km) and the Shihuanan tunnel (7.505km), all three forming 39% of the total route length. These tunnels are fitted with CRT51 concrete track slabs, a prefabricated slab system similar to that which has been in use in Japan for many years.

The PANBOL Offset SFC (Single FASTCLIP) baseplate system is used throughout the tunnel sections. These baseplates, incorporating the FASTCLIP fastening, feature lateral adjustment of up to ±12mm and vertical adjustment of ±4.0±2mm, which makes it an ideal product for slab track where the speed and ease of installation and alignment, both in the initial construction and subsequent realignment, is critical.
Track geometry tolerances for S-T PDL (static track irregularity)

<table>
<thead>
<tr>
<th>Item</th>
<th>200 km/h</th>
<th>200+vs=350km/h</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical irregularity</td>
<td>2mm</td>
<td>2mm</td>
<td>10m long chord</td>
</tr>
<tr>
<td>Lateral irregularity</td>
<td>2mm</td>
<td>2mm</td>
<td>10m long chord</td>
</tr>
<tr>
<td>Twist</td>
<td>3mm</td>
<td>-</td>
<td>Base on 6.25m</td>
</tr>
<tr>
<td>Track Cross Level</td>
<td>2mm</td>
<td>1mm</td>
<td></td>
</tr>
</tbody>
</table>

The success of the Shanghai metro project was a result of a number of technologies that were developed and implemented. These technologies include advanced track design, new types of track components, and state-of-the-art construction techniques. The implementation of these technologies was critical to the success of the project, as they allowed for a smooth and efficient construction process.

From a technological perspective, the Shanghai metro project represents a significant step forward in the development of high-speed rail systems. The project was completed on schedule and within budget, and it is now in operation, providing a much-needed public transportation system for the city.

Heilongtau to Wuhan (H-W PDL)

A further new PDL line, linking Heilongtau to Wuhan, has been constructed, with a total route length of 356km.

Heilongtau to Wuhan Passenger Dedicated Line

There are four main tunnels in this PDL, Daiboishan Tunnel (13.250km), Jinshai Tunnel (10.97km), Hongduhu Tunnel (7.857km) and Hongmeng Tunnel (5.108km). PANDROL In-line SFC fastenings were selected to be installed in the tunnels in this project, once again selected for the lateral (up to ±12mm) and vertical (+30/-0mm) adjustment they offered.

The difference between PANDROL Offset SFC and-in-line SFC relates to the bolt positions - Offset SFC fastenings are designed for slab track applications where a lightweight baseplate is required. In-Line SFC fastenings are designed for use on Concrete sleepers embedded in slab track, such as the Rheda 2000 system, where anchor bolts must be 'in Line' to avoid the steel reinforcement.

On the Heilongtau to Wuhan PDL, the baseplates were bolted to twin-block sleepers, which were then encased in reinforced concrete to form a concrete slab track - a process commonly referred to as 'Top Down' Construction. PANDROL In-Line SFC fastenings were attached to twin-block sleepers had previously been selected for the KTZ high-speed lines in Korea, with great success, which provided a good reference for the Chinese MOR.

As with the S-T PDL, the initial line speed will be 250km/h, increasing to 300km/h, with a maximum axle load of 25 tonnes.

This PDL opened to operation in April 2009 and forms an important part of the proposed new high-speed railway between Shanghai and western China.

Track Construction on the H-W PDL

1. All fastening components were pre-assembled on the baseplates.
2. The pre-assembled baseplate was bolted to the twin-block sleepers with a corrugated pad beneath the baseplate.
3. The twin-block sleepers complete with fastenings were laid onto the tunnel base slab and top slab base reinforcement.
4. The rails were threaded into the rail seats, and the clips applied.
5. Spindle jacks were fitted to the rails and the rails were raised, levelled and bucketed. The rails were fitted with Gauge Bars to prevent the rail gauge decreasing due to bending of the twin-block sleepers.
6. Once the track had been precisely adjusted, concrete was poured to form the final track.
7. After the slab concrete was cured, the alignment of the track was checked.
8. If the vertical adjustment was out of the specified tolerance, vertical adjustment using height adjustment clips was carried out.
9. If the measured track gauge was out of tolerance (+/-1.5mm), lateral adjustments were made by simply lowering the bolts and moving the baseplate laterally via the slot in the baseplate and the tampered washer.

Track geometry tolerances for H-W PDL (static track irregularity)

<table>
<thead>
<tr>
<th>Item</th>
<th>250 km/h</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical irregularity</td>
<td>2mm</td>
<td>10m long chord</td>
</tr>
<tr>
<td>Lateral irregularity</td>
<td>1mm</td>
<td>10m long chord</td>
</tr>
<tr>
<td>Twist</td>
<td>3mm</td>
<td>Base on 6.25m</td>
</tr>
<tr>
<td>Track Cross Level</td>
<td>4.17-1mm</td>
<td></td>
</tr>
</tbody>
</table>

PANDROL VANGUARD in China

The first Chinese installation of PANDROL VANGUARD, the revolutionary rail fastening for the reduction of noise and vibration from railway tracks, was made in Guangzhou Metro in 2004, comprising of 700 assemblies on their lines 4 and 5. Further installations have followed every year and the Metro now has over 47,000 VANGUARD assemblies along its route length.

PANDROL’s VANGUARD system delivers an assembly with both very low vertical stiffness and minimal rail roll and delivers exceptional vibration reduction performance at a much lower cost than floating slab.

In a VANGUARD assembly, the rail is supported under the head and in the web with large rubber wedges, leaving the foot of the rail suspended. The rubber wedges are held in place by cast-iron side brackets which are either fastened to a concrete sleeper, concrete block or slab, or to a baseplate fixed to the track base using either bolts or screwspikes.

Following the success of the Guangzhou Metro installations, Beijing Metro decided to introduce VANGUARD on its Line 5, and a successful site performance of ground vibration reduction with the system met the requirement for the 2008 Olympic Games in Beijing.

Planned installations on Beijing Metro will be double those installed in 2008, and there are further projects proposed for other Chinese metro systems in 2010/11.

Main Line Length: 356km

Completed track with In-line SFC

VANGUARD installed on the Beijing Metro

Completed Track for Heilongtau to Wuhan

The track opened in April 2009, and track geometry quality has been first class.

Heilongtau to Wuhan Passenger Dedicated Line

Classification | Application Standard | Remarks |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum design speed</td>
<td>250 kn/mhr</td>
<td></td>
</tr>
<tr>
<td>Minimum radius</td>
<td>4,500 m</td>
<td></td>
</tr>
<tr>
<td>Maximum Gradient</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Effective length of platform</td>
<td>850m</td>
<td></td>
</tr>
<tr>
<td>Track Gauge</td>
<td>1,435mm</td>
<td></td>
</tr>
<tr>
<td>Distance between adjacent tracks</td>
<td>4.6m</td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td>CHn60</td>
<td>60kg/m</td>
</tr>
<tr>
<td>Electricity</td>
<td>AC25KV</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>-29°C to +40°C</td>
<td></td>
</tr>
</tbody>
</table>

Heilongtau to Wuhan PDL, linking Heilongtau to Wuhan, has been constructed, with a total route length of 356km.
The Pandrol VANGUARD system is gaining widespread recognition for its excellent performance in controlling ground vibration. The system is now being installed all over the world, and has recently been adopted by the Korean Metro Shinbundang Project.

The Shinbundang project covers the construction and operation of a dual-track railway connecting Gangnam, Seoul and Bundang, in the south-east suburbs of the capital city. 'Bundang' is a new town that was built on the south-east outskirts of Seoul in the early 1990s, and 'shin' simply means 'new'. In Korean, so combining the two gives the project its name, meaning 'New Bundang'.

Bundang has become known as a popular residential area, giving easy access to the Seoul Gangnam district, the busiest business and commercial centre of the nation. The new town rapidly gained in popularity and it has been fully occupied since the start of the new millennium. However, new residents continue to be drawn to the area, and the demand has not abated. It was decided by the government to build another new town, to be called 'Pangyo', immediately adjacent to Bundang. It was therefore necessary to provide an effective transport system to cover not only the expanding population of Bundang, but also for the new residents of Pangyo.

The Shinbundang Line is being constructed using the BTO (Build-Transfer-Operate) model, which means that ownership will revert to the nation at the completion, while the concessionaire Shinbundang Railroad Co., Ltd. operates the system for 30 years. The Shinbundang Railroad Co., Ltd is a consortium of 7 companies, including Doosan Construction & Engineering Co., Ltd.

Map showing route, distance and depth of tunnel
DIRECT FIXATION ASSEMBLIES

Port River Expressway Rail Bridge – Adelaide, Australia

CUSTOM DESIGNED PANDROL VIPA-SP BASEPLATE FOR DUAL-GAUGE APPLICATION.

A bascule rail bridge spanning the Port River in Adelaide, Australia was officially opened to rail traffic in June 2008. The dual-gauge track on the bridge has been installed using Pandrol VIPA-SP FASTCLIP baseplates to attenuate vibration and reduce noise from the structure in this urban location.

This was the first time that the VIPA system had been adapted for a dual-gauge configuration. Special baseplates were designed and tested by Pandrol Australia to meet the requirements for direct fixation and the track gauges of 1600mm and 1435mm. Due to space constraints, an ‘e’ clip was used between the two rails. Standard VIPA-SP baseplates were used on the common rail.

At specific locations, there was a requirement for the VIPA-SP baseplates to be fitted with Zero Longitudinal Restraint (ZLR) FASTCLIP fastenings to allow the rail and bridge to move independently and so minimize the stresses in both the rail and the bridge deck.

ALIGNMENT

The track section on which the VIPA-SP baseplates have been installed is 1071m in length and consists of two curves of radius 385m (30m transition length and with 50mm super-elevation), separated by a 57m tangent on the bascule bridge span. The vertical alignment has a maximum allowable raking grade of 1 in 70 (1.429%) up to the bascule section. Here it passes through a 1450m radius vertical curve on the summit before running down at a grade of 1 in 9.

VANGUARD assemblies are pre-assembled on the rail complete with anchor fastenings.

The construction of the line commenced in July 2007 and is scheduled to be completed in September 2011. It is a rapid transit system with a maximum operating speed of 90km/h.

There will be 6 stations between Goolwa and Morphett Vale. It will take 16 minutes to ride the total length of 18.55km, on driverless, fully automated 5-car trains. Trains will run 312 times a day at 8 minute intervals and at 5 minute intervals during rush-hours.

The Shihbunbun track will be constructed with concrete slab throughout, including all turnout sections, so it was essential to have an effective vibration attenuation system. The problem faced by the design team was that the existing track system specified would not meet the reduced noise and vibration requirements for the areas of track directly below new residential buildings. Excluding costly floating slab, the Pandrol VANGUARD system was the only system that could reduce vibration to the required level of 55 dB and below in this residential area, over a length of approximately 2km and involving 14,284 baseplates.

Following the selection of the Pandrol VANGUARD system, a small party of engineers from KTRC and the Shihbunbun project team visited the Pandrol Development Laboratory in Nottinghamshire in the UK, to approve the system and finalize the track build method. Pandrol VANGUARD installations on the Shihbunbun line will consist of 14,284 units over 2 phases over the next 2 years.

The first installation of the Pandrol VANGUARD system was made on June 30th, 2009 near Pargny station. The particular configuration that is being used on the Shihbunbun line project is a standard 4-hole Vanguard baseplate for direct fixation on to a stage 2 fixed concrete slab, using bolts into cast-in inserts. The build method used on this project is a so-called top-down construction “plunge” method, described below and similar to that used to install Pandrol VANGUARD at St Pancras station in London. The baseplates are first pre-assembled on to lengths of continuously welded rail. These sections are lifted into position and set to line and level using the existing design of track-adjustment system jigs.

Due to the location of the Pandrol VANGUARD track sections within the tunnel and the distance from the construction access point, the concrete contains a greater proportion of water than usual to allow it to be pumped to the required area. It was feared that the effect of the high water content could be that if the concrete were simply to be poured directly under the Pandrol VANGUARD baseplates, then moisture exuded from the concrete could evaporate and form voids beneath the baseplates. Therefore, the “plunge” method has been adopted. The whole track is raised an additional fixed 5mm above the final poured concrete datum level. During the concrete pour stage, the final concrete level is obtained, and top surface then floated flat to the required surface finish. The concrete is monitored directly after the pour-stage to assess the amount of water separating from the concrete top surface. Any surface water is removed prior to the complete track section being lowered by the 5mm initial offset into the still-wet concrete slab. In this way the required track height is achieved while removing trapped water and avoiding voids beneath the baseplates.

After the concrete had set for 28 days to obtain full hardness, the anchor bolts were fully torqued to the required 1200Nm ± 200Nm (maximum limit 1500Nm), and any final gauge adjustments made.

The project now foresee a second installation of the Pandrol VANGUARD system towards the end of 2009. With these further installations of VANGUARD, the residential areas of Pargny new town will benefit from a high-performance system to control ground vibration and the resulting secondary noise.
DIRECT FIXATION ASSEMBLIES

BASCULE BRIDGE DETAILS
The railway bascule consists of a through-steel box-girder superstructure. This was required because of the limited clearance between the top of the rail and envelope of the channel. Each is a welded steel box girder 60.5m in length, with 47.25m from bearing to bearing. The girders vary in depth from 2.9m in the main span to 4m deep through the counterweight.

The deck is supported on two bascule girders. The counterweight required to balance the rail bridge is approximately 469 tonnes. The single leaf bridge rotates about and is supported on two trunnion-shaft assemblies, one mounted in each bascule girder. Each trunnion-shaft is simply supported between two plain bronze sleeve bearings. The bridge is operated by drive machinery located beneath the track level. A 75kW (100hp) span motor has been selected to operate the span in normal conditions, through a 384.1 reduction ratio gear box. The machinery is also equipped with an 18kW (25hp) auxiliary motor that is used by an independent electrical supply system to provide complete redundancy. In the event of an electrical supply failure, a back-up generator is located on site. The bridge-operating machinery consists of a primary reducer, which is coupled directly to the main pinion shaft. Each main pinion shaft is simply supported between two spherical roller bearings. The main pinions mesh with rack segments - which is the means by which rotation of the span is driven - mounted to the bottom flanges of the railway bascule girders.

Two drum brakes, mounted on the motor shafts, provide braking for both bascule spans. To secure each span in the stopped position, lock bars are driven by machinery mounted at each end pier to a receiving socket located at the toe of each bascule. The actuator for each leaf is remotely operated during normal operation, but is also equipped with a manual hand crank for emergency operation.

FIXED BRIDGES
There are three types of fixed bridges within this project – steel box girder with reinforced concrete deck for 60m spans over water; pre-stressed concrete box girders with concrete deck for 40m spans for high level bridge over land and pre-stressed concrete plate girders with concrete deck for 10m spans at low level. The bridge sits on reinforced concrete columns, which have piled foundations.

The bridges are conventional structures, with the exceptions that in order to transmit emergency braking forces to the ground, "lock up devices" (LUDs) are fitted to nine pairs. These devices, typically used in earthquake prone areas, are silicone filled two-way pistons that have a small hole to allow gradual movement as a result of temperature changes. However, under shock loading the viscous silicone filler is unable to pass from one side of the piston to the other, effectively locking the girder to the substructure.
PANDROL FASTCLIP was the world's first fully captive, self-tensioning, resilient rail fastening. It is delivered to the tracklaying site pre-assembled on the sleeper, eliminating loose component distribution and handling on the track. The underlying principle of the PANDROL FASTCLIP is a 'switch on/switch off' one. It is a 'total' system - once the sleeper is laid and the rail installed, the clip is simply pushed onto the rail by means of a simple 'drive' action. For de-stressing, the rail is quickly and easily released. The system is 'switched off' leaving the clip in a parked position, with all the components remaining captive on the sleeper.

This singular development in rail fastening technology has changed the way in railway track is laid, de-stressed and maintained by enabling contractors to automate the entire tracklaying operation and thus take advantage of the associated cost and time savings.

INCREASING TRACKLAYING PRODUCTIVITY

The next stage was to look for areas where tracklaying methods could be improved further. Pandrol's vision is to offer a system which can offer significant savings not only in labour, but in valuable and costly possession times. Working with two Pandrol subsidiary companies, this system incorporates:

- the pre-assembled PANDROL FASTCLIP rail fastening,
- high output mechanised installation equipment from Rosenqvist Rail,
- stressing rollers from Vortok International...which working in combination offer a unique system for the highly efficient installation and de-stressing of track.

VORTOK INTERNATIONAL

Vortok International joined the Pandrol group in 1991 and has developed a reputation as an innovator in the design and development of products offering significant benefits through the reduction of track possession time and the improvement of work practices and safety standards.

Vortok's latest development, the Vortok Stressing Roller (VSR), assists in the rail stressing operation, which ensures that the rail is safe both in extremely hot and in bitterly cold weather. It replaces less sophisticated techniques which require three different pieces of equipment - an under-roller, a side-roller and a rail raising device. The VSR combines the functions of all three of these pieces of equipment in one unit, resulting in savings in labour, time and therefore costs.

In a conventional stressing procedure, an operator uses a jack to lift the rail from an unclipped sleeper. A second operator inserts the under-rollers before the rail is lowered back into position. In addition to time and labour requirements for these operations, the procedure itself is open to risks, such as hands being trapped under the rail when the under-rollers are being placed, or the roller itself being damaged when the rail is lowered.

The VSR simply drops into place and self-locks onto the PANDROL FASTCLIP shoulder housing. The roller is then rotated into the 'raised' position and the installation is complete - all accomplished in under ten seconds. The action of raising the rollers is very easy and requires little exertion on the part of the operator. The function of rollers during the stressing operation is to minimise friction and to ensure an even distribution of stress along the length of the rail. This is achieved by reducing the coefficient of friction using high quality roller bearings.

VSRs combine a simple raising function with a very low friction contact bearing under the head of the rail. Additionally, the life expectancy of a VSR is many times that of conventional under- or side-rollers. Over the lifetime of the equipment, a cost saving in the region of 75% can be achieved, and fewer rail breaks at the weld occur thanks to the reduction in localised tension, thus offering additional savings. More importantly, with track possession times becoming increasingly restricted and costly, the time savings achievable using VSRs are extremely valuable. A typical saving is around 90 minutes in the preparation of the rail prior to stressing and welding, with a further 60 minutes being saved in returning the rail to a serviceable condition. The VSR brings unprecedented levels of performance, safety and efficiency to the tracklaying process.

Vortok Stressing Rollers in track

Rosenqvist Handylipper
re-stressing process. They are now in service in the UK, South Africa, Sweden, Denmark, France, Germany, Australia, Brazil and the USA.

ROSENQVIST RAIL

Rosenqvist Rail AB are specialists in the design, manufacture and marketing of high production machinery, equipment and working processes for the construction and maintenance of railway tracks. On 1st December 2008, the company became a fully owned subsidiary of Pandrol International Limited.

Rosenqvist Rail AB was established by Anders Rosenqvist in 1994, who at the time had an assignment for the Swedish State Railways to upgrade part of the Swedish East Coast Line. While developing his excavator, he realised the enormous potential for efficiency improvements in the construction and maintenance of railway tracks. This led him to develop new methods and to design various equipment with the aim of speeding up and improving productivity on the railways.

The knowledge of practical track work that Anders and his team has acquired since then has been successfully transferred into continually improving methods and equipment for the benefit of the railway industry.

The company is based in Hudiksvall in Sweden, from where it carries out all of the research and development and prototype work that goes into the design and manufacture of high output equipment for the mechanised installation and extraction of rail fastenings.

Before joining the Pandrol group, Rosenqvist had already worked closely with Pandrol’s engineers to develop a range of machinery to install PANDROL FASTCLIP rail fastenings.

The Handyclipper is manufactured as a versatile hand-held tool for smaller installations or spot maintenance. The product consists of a power unit and two different working tools – an installation tool (either standard or heavy duty) and an extraction tool. The power unit is supported by a wheel which sits on the rail to relieve the operator from the weight thus preventing possible injury. By design, the machine places the sleepers by up to 10mm when installing the fastening. Installations rates of up to 10 sleepers per minute are achievable.

The Rosenqvist CD400 clip driver is designed for use with a reelnailer vehicle that can supply hydraulic power to the operating unit. The clip driver can both install and extract FASTCLIP fastenings and can be combined with accessories for raising low-lying sleepers if necessary.

A further option is the possibility to equip the unit with sensors for automatic fastening, which further increases productivity. The sensor detects the clip, activating the installation action automatically. The unit is capable of achieving installation rates in the region of 40 sleepers per minute.

The most recent development demonstrates how far the company has progressed in terms of increasing productivity in the installation of FASTCLIP fastenings.

Rosenqvist CD500 Hi-Output clipping machine is a self-propelled machine that uses a pincer method to insert or extract four FASTCLIP fastenings at a time. The clipping function can operate, at choice, in manual, semi-automatic or fully-automatic modes, and

MAJOR RAIL PROJECT IN NORTH AMERICA

In the USA, a modified CD500 machine is currently in use installing Safeflok III rail fastenings, which work on the same principle as FASTCLIP. Concrete sleepers pre-assembled with Safeflok III fastenings are delivered to the track site, with the clips in a parked position, ready to be installed by machine. Balfour Beatty Rail, Inc. is about to finish the rehabilitation of 68 miles which is the major portion of the 90 mile project on Kansas City Southern’s route from Victoria, Texas to Rosenberg, Texas. When this line opens this year it will ease congestion and shorten the KCS Texas to Mexico route by 70 miles. This newly reconstructed rail line will have new ballast, concrete ties, rail and Pandrol Safeflok III clips. Balfour Beatty is the main contractor and accepted a very aggressive production schedule that started in February and completed the 90 miles in June. Jose "Pepa" Garcia, Balfour Beatty’s Area Manager, stated: "One of the most challenging portions of this project is the rail de-stressing job, we needed to complete 65 miles in 60 days. We had a tough time meeting this production rate with the machines we had clipping and de-clipping, until the Rosenqvist CD500 machine arrived." The Rosenqvist CD500 was brought into the project by Mark Meyer, Balfour Beatty’s Director of Equipment U.S.A. in February. Since the machine has been on the project they have been able to meet the production rates required, de-stressing and welding over a mile a day 7 days a week. Mark Meyer was quoted saying, "The Rosenqvist CD500 clip machine was the key to our success in meeting the high production demands demanded by our customer.”

When this line is finished the Kansas City Southern says it will help to bring products from Asia to the U.S. via their Mexican Pacific Coast ports.

Additional optional extras include a sleeper lifter, to lift low lying sleepers. This also enables lateral adjustment of the sleeper to up to 43mm.

Versions of the CD500 are currently operating in the UK, USA, Australia and France.
PANDROL FASTCLIP on the Gaziantep Light Rail System, Turkey

Located in southeastern Turkey, Gaziantep is the sixth province of the country in terms of provincial centre population size. It has 2% of Turkey's total population and a population density which is 2.3 times that of Turkey and Southeast Anatolia. Within its population, 35% are working people, and 15% are students.

Gaziantep is a city with a 5000-year history. It has been home to various civilizations over the centuries; however, all of them have a feature in common; Gaziantep has always been the centre of commerce and culture. Today, it is one of the industrial and commercial centres of Turkey with an important export volume, contributing to the regional economy by marketing at home and abroad the products that it manufactures with its own resources. Developments in industry have made the province the region's centre of attraction.

In addition to its industrial zone, the city is also home to various historical and cultural monuments, such as the Gaziantep Castle in the city centre, which is notable for its splendour and history; the mosaics of the ancient city of Zeugma and the second largest museum of ceramics in the world. These attract many tourists and visitors, making a good public transportation system a necessity.

Construction of a new light rail transportation system began in September 2008 and will be carried out in three stages.

The line consists of 9.5km of double track, with 13 at grade stations, one depot and a workshop, which has a capacity of 31 vehicles. The line starts at Gar station, continuing on through Stadium and University stations and terminating at Burg station.

The line will have a maximum operating speed of 50 kn/h, although commercial speed will be 22km/h. Track Gauge is 1435mm.

A total of 15 vehicles will operate on the route, each with a capacity of 6 persons/m², carrying 250 passengers in total.

It was the first time the FASTCLIP system had been installed in Gaziantep. Twin-block concrete sleepers pre-assembled with FASTCLIP fastenings were supplied by Yuksel, with the installation of embedded track carried out by the contractor Bione.

The sleepers are being laid directly onto the base slab, short lengths of rail are then threaded into the rail seats, the rails are clipped up using hand tools, and then the rails jogged to line and level.

An excess of steel reinforcement is placed all around the sleepers and concrete is then poured to embed the sleepers.

Sleepers lifters were used to lift any low sleepers if necessary.

Overall, all parties are very happy with the way in which the project is progressing and commented on the ease of use of FASTCLIP. The new line is expected to be completed in the first quarter of 2010.
The Arad Tram Modernisation - the most environmentally-friendly means of public transport.

by Eng. Gheorghe Falca, Mayor of Arad

The town of Arad, situated in Northwest Romania, has the most extended tram network in Romania in relation to the population, namely 100 kilometres of track for 165,000 inhabitants. Tram is the traditional means of transport in Arad. The tram track coverage in Arad municipality is also very good: 17 urban routes and 5 suburban ones. During the year of 2007, 200 tram vehicles carried 7,362,608 passengers and the 22 routes amounted to 5 million kilometers covered.

This year, the town celebrated 140 years of public transport, when the first horse-drawn trams were put into service on three routes. They operated until 1916. A suburban tram line was inaugurated in 1910, connecting the town to the Arad Vineyard Region, the agricultural products supply source for the town's markets. The line Arad – Podgoria was electrified in 1913, becoming the first such tramline in Romania and among the first in the world. In 1946, the electric tram was put into operation in Arad and since then, the network has gradually extended, along with the urban development.

For the last four years, Arad has invested extensively in tram transport modernisation, as this is the most environmentally-friendly means of transportation and at the same time, the one the people of Arad use the most. At present, Arad Municipality is carrying out the most important urban transport project of Arad, co-financed by the European Bank for Reconstruction and Development that implies the rehabilitation of urban infrastructure on the main axis of Arad, from its Western entrance to its exit towards Timișoara.

The first stage of the project, amounting to over 30 million Euros will be completed by the end of this year and modernizes 11.765km of track and the adjoining roads. The works for the second phase of the project, starting next year, will cover 6.36km of track.

The project consists of rehabilitating the original tracks fastened with screwspikes.

1000mm gauge tram track by replacing the old, worn-out 540 rails which were fixed by screwspikes directly onto the wooden sleepers. The rehabilitated tracks utilise a far more modern system, whereby the 540 and 660N rail is fixed to new concrete sleepers by the FASTCLIP FD rail fastenings. These fastenings are designed for mainly tram track and traffic conditions with lower levels of axle load, speed and curve – therefore typically suited to trains operating low or medium density operations, such as those in Arad.

This fastening system has no threaded components – anchorage is by cast-in shoulders that hold the rail at the correct gauge and FASTCLIP FD automatically sets the deflection. The shoulders are set into the sleepers during the sleeper manufacturing process. Out of the entire route length, about 75% is on concrete sleepers and the remainder on concrete slab track.

The main features of the track are:
- track gauge 1000mm
- minimum radius 50m
- sleeper spacing 0.75m
- rail inclination: 40:1 for 660N rail, 20:1 for 540 rail

The main features of the rolling stock are:
- static load on axle 12 tonnes
- wheel diameter 900mm
- cart axle base 1800mm to 2000mm
- wagon axle base 6000mm to 10000mm
- utility wagon axle base 3000mm to 6000mm
Managing the Rail Thermal Stress Levels on MRS Tracks - Brazil

by Célia Rodrigues, Railroad Specialist, MRS Logistics, Juiz de Fora, MG-Brazil
Cristiano Mendonça, Railroad Specialist, MRS Logistics, Juiz de Fora, MG-Brazil
Cristiano Jorge, Railroad Specialist, MRS Logistics, Juiz de Fora, MG-Brazil
Alexandre Bicalho, Track Maintenance Manager, MRS Logistics, Juiz de Fora, MG-Brazil
Weiler Vidal Jr., Railroad Consultant, Chiyoda, Juiz de Fora, MG-Brazil

SUMMARY

Prevention of excessive longitudinal thermal stresses in welded rails, generated by lower or higher current rail Stress Free Temperature (SFT) or Rail Neutral Temperature (RNT), is an important track maintenance and safety issue. The effective management of the Neutral Temperature in welded rails has a fundamental effect on heavy haul operations. This paper shows the steps taken by MRS and actions to reduce both rail pull-aparts and track buckling. MRS has set up a system approach to get RNT measurements on track sections, by surveilling their track. This is allowing rail de-stressing to be based on the database of real time RNT profile measurement data as well as rail de-stressing control and checking systems. The main goals are to reduce rail pull-aparts, track buckling and train delays, providing alerts against potential hazards to rails and the monitoring of rail joint condition.

1. INTRODUCTION

Since 1996, the beginning of MRS railway operations, there have been hundreds of rail pull-aparts, even during mild tropical winter weather and also much more thermal track buckles, imposing reduced speed railroad traffic in several locations during hot tropical summer days when the risks of thermal track buckling increase.

In 2006, after a major derailment involving 32 iron ore loaded cars had occurred during a cold winter day caused by rail pull-aparts, MRS decided to invest and to look for possible preventive actions. Due to all of the buckling events that had occurred during winter and summer, it had been necessary to undertake a high number of longitudinal stress measurements. In September 2007, MRS set up a systematic approach to take RNT measurements using the non-destructive and portable equipment called VERISE® provided by Vibick International. Based on RNT measurements, the most critical locations could be selected to schedule rail thermal stress relief (rail de-stressing). These activities have allowed MRS to correct the sites where there were serious anomalies and to plan the correction of less crucial points in conjunction with other maintenance activities.

The current field measurement teams are working using three VERISE® units. They are responsible for establishing the actual RNT Profile Data and also checking the rail de-stressing history from a database of real time RNT measurement profile data. MRS’s maintenance planning team provides the priority list of rail de-stressing schedules based on these track measurements.

Besides the rail de-stressing control and checking system, the results are monitored and recorded in the system. RNT constantly changes along a given section of track due to several factors:

• Train acceleration and braking forces.
• Locations where clips can no longer support the axle forces.
• On severe track gradients.
• Where there is rail seat erosion and the ballast condition is poor.
• As a consequence of tamping and ballast cleaning services.

High compressive longitudinal thermal forces will be produced whenever the current rail temperature is higher than its actual RNT profile.

Figure 01 MRS 136 RE rail section pull-a-part

Figure 02 MRS buckled track section and detailed view
and the reverse also applies; high tensile forces are produced when the current rail temperature is lower than its actual RNT. High compressive longitudinal thermal forces cause buckling while high tensile forces accelerate the growth of internal rail defects and cause rail fractures, weld failures, rail joints to pull-apart and rail joint bolts to fail on cold nights. The greatest risk is of derailment. The main goals are to reduce rail pull-apart, track buckling and train delays and to provide alerts against potential hazards to rails and monitoring rail joint condition.

2. SCOPE OF THE PROJECT
The project consisted of introducing effective technologies and developing a methodology diligently guided by the process of measurements of rail longitudinal stress levels and de-stressing welded rails subjected to high compressive and tensile forces. The main steps of the system were:

PHASE I – RNT Surveying & Corrective Service Schedule
a) Identify the causes of anomalies on MRS track
b) Track field tests to determine the actual RNT from each track segment on MRS’s network by a reliable and accurate rail stress measurement system
c) Survey RNT and stresses along the MRS track sections through measurements and monitoring
d) Provide alerts by comparing the current RNT measurements with the adopted RNT

PHASE II – RNT Surveying & Corrective Service Schedule

PHASE II – RNT Surveying & Corrective Service Schedule

3. MRS RAIL STRESS MANAGEMENT SYSTEM
MRS Rail Stress Management System is composed of several activities or steps that have resulted in the reduction of rail breaks and track buckling on MRS track:

3.2. Measurement Procedure
- Unclip 30-35m (100 - 120 ft) of rail
- Elevate the rail 60mm (2.5 inches) using two spacers (each spaced 10m (32.5 ft) from VERSE®)
- Apply vertical force (1 metric tonne) to lift rail
- Measure the load and vertical displacement
- Use load/displacement relationship to calculate RNT

3.1. Technology Acquisition and Application
MRS Track Engineering evaluated several technologies available in the railway market and decided to acquire three VERSE® units from Varistek International and to develop its implementation with its own team, establish the appropriate methodology and data organisation and management system.

VERSE® (Vertical Rail Stiffness Equipment) is a portable mechanical system to provide a fast and accurate non-destructive determination of RNT through measurement of current rail longitudinal thermal stress. This equipment is capable of measuring the actual RNT by applying a rail deflection force to a suspended rail by establishing its stiffness. For data input and collection, a RADIX computer is utilized.

4. RAIL DE-STRESSING SYSTEM
Rail de-stressing is a maintenance practice applied to reduce the effects of temperature changes on MRS lines with long or continuous rails, allowing more stability of track and lower internal longitudinal stresses in the rails.

4.1. Equipment adopted for rail de-stressing
The same tools are used as applied in rail replacement practice, adding hydraulic, tools, four Skid bronze hammerers, jack, rail thermometers, stressing rollers and mechanical extensometers.

4.2. Maintenance Procedures created for MRS Track Conditions
a) Joint disassembly at the rail end (or rail cutting), releasing the end of the rails to allow their free movement
b) Un-clipping the rail 120m (half the length of MRS’s CWR) to each side of the rail string from the rail joint
c) Applying hydraulic tools and with the rail temperature below the specified neutral range, mark the rail foot and tie plates to determine the rail movement and ensure even stress distribution through the stressing length. (Note: if the rail is within the NRT range, the use of hydraulic rail sensors is not required)
d) Rail de-stressing is not possible when the measured rail temperature is above the NRT range (de-stressing must be scheduled to a period of the day when the measured rail temperature is below the NRT range)
e) Cleaning debris away between the rail foot and the tie-plate to allow rail free movement
f) Insert stressing rollers under the rail, spaced correctly to allow rail free movement with reduced friction

g) Adjustment of the joint gap by rail cutting or displacement to enable joint assembly or spacing to weld the rail
h) Removal of the stressing rollers and clip the rail
i) Joint assembling or rail welding
j) Removal of the hydraulic tools after checking the stress distribution.

Checking De-stressing executed in Barra do Pilar
5. RESULTS

5.1. Rail Stress Measurement and Rail De-stressing Results

Table 01 shows an example of the rail stress measurement and rail de-stressing results made by track gangs that used VERS® and rail de-stressing equipment in a short track section of MRS’s heavy haul main line (Borra do Pria – R). From September 2007 to March 2009, MRS accomplished 2,000 rail stress measurements using VERS® along 742km of rail length (31% of MRS’s heavy haul lines), requesting rail de-stressing 200km of rail to prevent track buckling and rail breaks caused by longitudinal thermal stresses. 500km of rail are scheduled to be measured using VERS® in 2009. There have been no derailments due to rail pull-aparts or track buckles since rail stress monitoring and rail de-stressing services were introduced in MRS track. In 2008, track buckling was reduced by 52% compared to 2007 and rail pull-aparts showed a 29% reduction between 2006 and 2008. Furthermore, no there have been no derailments due to these anomalies since then.

6. BENEFITS EXPECTED

MRS intends to use both VERS® measurements and rail de-stressing with the aim of achieving, as a minimum, the following benefits:

- Annual reduction of 25% of rail pull-aparts and track buckles in future years.
- Track maintenance cost reduction of 3 to 5%.
- Operational safety improvement.
- Reduction of delayed trains.
- Elimination of derailments due to winter rail pull-aparts and summer track buckling.

7. CONCLUSION

In 2008, the reduction of rail pull-aparts and track buckling was satisfactory. Until March 2009, the levels of track buckling remained stable even in hot summer weather and its high temperatures. Rail breaks have been decreasing in comparison to previous years.

Rail management is complex and dynamic. Historically, RNT data collection was based on previous knowledge that often, could not be logically applied, rather than in a structured and organised way. It meant that when MRS acquired the VERS® technology, the main challenge was to introduce measurements as a routine part of track maintenance that informed subsequent track maintenance planning. MRS Track Engineering established a challenging aim to provide and maintain a continuous, reliable and effective system of rail maintenance management based on effective monitoring.

Rosenqvist Rail AB has developed a new FASTCLIP clipping module that fits underneath a track renewal train.

It can be folded up and secured underneath the body of the train during transport. It has inductive sensors which trigger the clipping operation when it detects the shoulder of the next sleeper. The clipping tool slides on a bar but remains stationary when clipping up to avoid moving sleepers. It catches up with the train via a hydraulic cylinder in a shuttle-like action.

As it works at the same speed as the track renewal train, the performance of the clipping module is not critical. On its own it could probably clip up 40-60 sleepers/minute.

It can also be operated manually, for instance when checking the tool settings.

The clipping module can be used in other applications where you have a track machine as it is small and can fit into narrow spaces. The wheels have UIC profile.

The track renewal clipper was delivered to Baneriket in 2008 and was first used for track renewal in the northern part of Sweden, with great success.

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTN Track Surveying</td>
<td>Ready & installed</td>
</tr>
<tr>
<td>Rail De-stressing Planning and Executor</td>
<td>Ready & installed</td>
</tr>
<tr>
<td>Rail Break & Track Buckling Monitoring</td>
<td>Ready & installed</td>
</tr>
<tr>
<td>Performance Indicators (Rail break & track buckling reduction)</td>
<td>Ready & installed</td>
</tr>
<tr>
<td>Rail De-stressing Control</td>
<td>Being installed</td>
</tr>
<tr>
<td>Management System</td>
<td>In development</td>
</tr>
<tr>
<td>Interface with other MRS systems & interlinking with systems modules</td>
<td>In development</td>
</tr>
</tbody>
</table>